Semantic Relationship Discovery with Wikipedia Structure
نویسندگان
چکیده
Thanks to the idea of social collaboration, Wikipedia has accumulated vast amount of semistructured knowledge in which the link structure reflects human’s cognition on semantic relationship to some extent. In this paper, we proposed a novel method RCRank to jointly compute conceptconcept relatedness and concept-category relatedness base on the assumption that information carried in concept-concept links and concept-category links can mutually reinforce each other. Different from previous work, RCRank can not only find semantically related concepts but also interpret their relations by categories. Experimental results on concept recommendation and relation interpretation show that our method substantially outperforms classical methods.
منابع مشابه
Wikipedia Link Structure and Text Mining for Semantic Relation Extraction
Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers huge number of concepts of various fields such as Arts, Geography, History, Science, Sports and Games. Since it is becoming a database storing all human knowledge, Wikipedia mining is a promising approach that bridges the Semantic Web and the Social Web (a. k. a. Web 2.0). In fact, i...
متن کاملKIEV: a Tool for Extracting Semantic Relations from the World Wide Web
Deriving knowledge from information stored in unstructured documents is a major challenge. The proliferation of knowledge sharing communities such as Wikipedia urge for automatic methods to construct a knowledge base consisting of entities and their relationships for advanced querying. More specifically, binary relationships representing a fact between two entities can be extracted to populate ...
متن کاملBuilding a biomedical semantic network in Wikipedia with Semantic Wiki Links
Wikipedia is increasingly used as a platform for collaborative data curation, but its current technical implementation has significant limitations that hinder its use in biocuration applications. Specifically, while editors can easily link between two articles in Wikipedia to indicate a relationship, there is no way to indicate the nature of that relationship in a way that is computationally ac...
متن کاملUsing Explicit Semantic Analysis for Cross-Lingual Link Discovery
This paper explores how to automatically generate cross-language links between resources in large document collections. The paper presents new methods for Cross-Lingual Link Discovery (CLLD) based on Explicit Semantic Analysis (ESA). The methods are applicable to any multilingual document collection. In this report, we present their comparative study on the Wikipedia corpus and provide new insi...
متن کاملAdvertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011